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Abstract— This paper presents a novel implementation of
the CASAH (Control Autonomy for Sampling and Handling)
robotics software system used in research and technology devel-
opment testbeds at the NASA Jet Propulsion Laboratory. Our
implementation divides control software into decoupled behav-
ior, user-interface, and hardware-level bus modules. This de-
coupling at the module level is accomplished by auto-generating
human-readable message types that are tailored to the exact
hardware topology of whatever system is currently in use. These
message types provide modules with a common framework for
exchanging state information and relaying commands to de-
vices while being agnostic to the communication protocol itself.
We also detail how to structure behavior and bus modules to
facilitate modularity and flexibility with third-party software.
This software package has been used with success on multiple
technology development testbeds at JPL, an example of which is
given in this paper, and has proven to provide developers a light-
weight and highly reconfigurable system for efficient debugging
and practical code sharing.

1. INTRODUCTION
There is an ever-increasing trend in the robotics software
community towards development using frameworks that ab-
stract away the more utilitarian functions of inter-process
communication, organization of state information, and the
scheduling and execution of processes. In theory, such plat-
forms as those surveyed in [6] free developers from the more
mundane aspects of robotics software development, allowing
them to focus on advancing the state of the art instead. We
have found, however, that in practice many of these “mid-
dleware” software platforms abstract too much functionality
from the user, inhibiting real-time control, complicating the
usage of external libraries, and making debugging difficult by
hiding code and functionality from the user. At JPL, we have
the added complication that our software must ultimately run
embedded on extraterrestrial spacecraft with limited memory
and processing power. By designing and testing control
algorithms using middleware with large and complex external
software elements, we often have to start from scratch in
transitioning to the flight system. Furthermore, many of our
projects use multiple testbeds with the same core software
system but require that we often swap out hardware and
behavioral control modules for testing, a practice that is not
easily accomplished with previous frameworks.
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Many of these issues are solved by strict decoupling of
software components. For example, a motor controller
interface should merely execute the commands it receives
and not depend on a robot’s physical topology or high-
level behavioral control algorithms. Architectures following
this principle have become prevalent since they were first
described in [4], and later at JPL with CASAH in [5] and
[9]. More modern implementations like RoboComp [10]
provide additional tools for developing and analyzing discrete
software modules, but they are either tied to some compli-
cated, hidden middleware that makes debugging difficult, or
they do not interface well with third-party software. Our
goal was to improve JPL’s minimal, well-tested CASAH im-
plementation in such a way that optimized reconfigurability
and was able to interface with external software packages
like ROS (Robot Operating System) [14]. We also required
that hardware interface modules be decoupled from high-
level control modules to facilitate rapid hardware prototyping
while minimizing developer overhead. Finally, we aimed
to write an implementation in which all abstracted elements
regarding communication between software components are
still exposed to the user for ease of debugging.

2. OVERVIEW
Definition of Terms

Throughout this paper, we use module to refer to a self-
contained set of source code files that are compiled (if nec-
essary) into a stand-alone communication node. All modules
run synchronously at user-defined loop rates and commu-
nicate asynchronously with each other. Behavior modules
receive and process state information and subsequently per-
form some function (e.g. path planning). User interface
(UI) modules receive, process, and display state information,
or they provide an interface for users to send commands
directly to other modules. Bus modules communicate with
hardware, execute device-level commands sent from behavior
and UI modules, and send device state information back. Bus
modules also contain configuration files that allow message
types and helper functions to be auto-generated by MotGen,
a custom-developed auto-coder, further described in Section
3. Consequently, we break out bus modules and their associ-
ated auto-generated files into a separate software component
called mot (pronounced as the first syllable of “motor”),
nomenclature borrowed from JPL flight software. In the
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Figure 1. High-level organization. Solid lines show
compilation dependencies between components. Shaded

boxes represent interchangeable elements. The dashed arrow
labeled “1” indicates that mot pub types.c and
mot pub types.h containing message structs are

auto-generated from the YAML [1] config files for each bus
module.

context of mot, we use bus to mean a communication bus
that links a control computer with external hardware. We use
device to mean a hardware and/or communication node on a
particular bus.

High-Level Description

Our system is laid out similarly to JPL’s CASAH implemen-
tation, detailed in [5] and [9], broken down into three compo-
nents at the architecture level, robot, modules, and externals,
except mot has been pulled out of modules and put in the
root directory with the other three. These directories divide
and organize configuration information and source code, as
illustrated in Fig. 1. Robot contains one or more robot
platform directories, each containing information defining
their respective bus topologies and configuration parameters.
Modules contains behavior and UI modules. Mot contains
bus modules and their auto-generated message structs and
helper functions, with which behavior, UI, and bus modules
communicate with one another. Finally, externals contains
generic libraries. As shown by the shaded regions in Fig. 1,
most of the software base is interchangeable. Using version
control software, swapping out modules and externals rele-
vant to the current robot platform can be scripted, eliminating
unnecessary code. Our recommended flexible build system,
described in Section 6, enables seamless recompilation.

Inter-Module Communication

Our software implementation emphasizes modularity at the
module level. That is, users are able to easily switch out
behavior, UI, and bus modules. Central to this effort is our
framework for interprocess communication (IPC) between
modules. Note that our system is agnostic to the partic-
ular flavor of IPC used; however, it is important that the
publish/subscribe pattern, or some variant as summarized
in [7], be used. Our software system contains no hidden
“middleware”, and thus should not require any intermediate
message brokering. It is also crucial that modules be able
to run in separate processes and on separate computers, as
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Figure 2. Example CASAH layout showing inter-module
communication.

// Language: C

typedef struct {
union {
motor_controller_config_t

motor_controller_config;
};

} mot_config_t;

typedef struct {
int msg_sender;
union {
motor_controller_state_t

motor_controller_state;
};

} mot_state_t;

typedef struct {
bool execute;
int msg_sender;
mot_cmd_type_t type;
union {
move_position_cmd_t move_position_cmd;

};
} mot_cmd_t;

typedef struct {
mot_device_type_t type;

mot_config_t config;
mot_state_t state;
mot_cmd_t cmd;

} mot_device_t;

Figure 3. Fragment from MotGen output showing our
custom data structures.

shown in Fig. 2. The publish/subscribe pattern is therefore a
natural choice, providing modularity up to the computer level.
Within the publish/subscribe pattern, we provide a system for
auto-generating common message types that all modules use
in communicating with one another. These message types,
auto-generated depending on the hardware present on a robot
platform, enable users to swap out bus modules with minimal
code changes.

3. DATA STRUCTURES
A key feature that enables the decoupled modularity that our
implementation of provides is the enforcement of common
data structures between all bus modules. In the C pro-
gramming language, we defined data structures for device
configuration, device state, and bus-level commands. As
illustrated in Fig. 3, we first define mot_config_t, a struct
that contains a union of config structs, one for each device
type used in the current robot platform. Each config struct



3contains variables that correspond to parameters relevant to
only that device. Next we define mot_state_t, which
contains a union of state structs, one for each device type
used in the current robot platform. Like the config struct,
the state struct contains state variables pertinent only to its
specific device. Finally, we define a mot_cmd_t struct that
contains a union of all command structs for each bus. We use
a command type enum to dereference the appropriate union
member. State structs are used to relay state information
from bus modules to behavior and UI modules and command
structs are used to send commands the opposite direction.

We use unions in our data structures so as to be able to store
device information in a single array without wasting mem-
ory. To do this, we define another struct, mot_device_t,
that stores a single mot_config_t, mot_state_t, and
mot_cmd_t struct for each device. As a result, we can fully
describe a bus using an array of mot_device_t structs,
where the position of a device in the array corresponds to
the position of that device on its physical bus. To describe
a complete robot platform, we define a two dimensional
array of device structs, in which the first dimension refers to
the specific bus and the second to the specific device. For
convenience, we wrote robot utility functions to facilitate
filling out and retrieving data from these arrays. For example,
robot_pub_get_device(bus,device_index) re-
turns a pointer to the mot_device_t struct at position
device_index on bus bus.

Sending State and Command Messages

In communicating with behavior and UI modules, bus mod-
ules send an array of state structs (one for each device
on its bus). The recipients use a mot utility function,
mot_pub_parse_state_msg(), to copy the state in-
formation into the correct position in their robot array.
This function uses the msg_sender struct member within
mot_state_t to discern from which bus module the state
information came. Similarly, to send commands directly to
bus modules, behavior and UI modules use a mot utility
function, mot_pub_send_commands(), to extract the
relevant command structs from their robot array and send
them as arrays to the appropriate bus modules. To com-
mand a particular device, a module fills out the command
variable fields in the correct position in the array and sets
the execute boolean to true. The command recipient will
then attempt to execute the command if that particular device
is capable of executing it. For example, a sensor could
conceivably be commanded to change its position, which
would not make sense. It is therefore incumbent upon the
bus modules to filter out such nonsensical requests.

MotGen Auto-Coder

A key attribute of our implementation is that behavior and
UI modules share a messaging framework for communicating
with bus modules. To promote modularity and reduce bloat
and complexity, the message content is tailored exclusively
to the devices being used on a given robot platform. In
our software, our Python-based auto-coder, “MotGen”, takes
YAML [1] configuration files from each bus module and
adds members to the previously described unions within
the mot_config_t, mot_state_t, and mot_cmd_t
structs. For example, MotGen would take the YAML file
shown in Fig. 4 and auto-generate the human-readable structs
file shown in Fig. 3. Not shown in the latter figure are
the definitions of the member structs in each union. These
are defined earlier in the file and simply contain the type
and name fields copied from the configuration file. The

# Language: YAML 1.2

module_name: rs485_bus
includes:
- rs485.h

state:
- device_type: motor_controller

state_variables:
- name: position

type: double
- name: velocity

type: double
- name: current

type: double
# Additional device types here

config:
- device_type: motor_controller

config_variables:
- name: units[256]

type: char
- name: gear_ratio

type: double
- name: max_speed

type: double
# Additional device types here

commands:
- name: move_position

args:
- name: position

type: float
- name: velocity

type: float
# Additional commands here

Figure 4. Example MotGen input for auto-generating
message structs.

motor_controller_config_t struct would therefore
contain double position, double velocity, and
double current members. If a user wants to use a
non-standard C type, they must add the appropriate header
file under the includes map key, also shown in Fig.
4. Additionally, in Fig. 3, mot_device_type_t and
mot_cmd_type_t are enums that are auto-populated by
MotGen with all of the devices and command types respec-
tively across all bus modules present in mot. The output
of MotGen is fully transparent to the user, making system-
level debugging much easier than it is using other software
frameworks that hide messaging code.

4. SPECIFYING HARDWARE TOPOLOGY
Our software system places all relevant hardware topology
information in one place. For each robot platform, a single
YAML file includes which devices appear on which bus and
in what order, as well as parameters such as an actuator’s
gear ratio. We chose YAML due to its readability and open-
source support for common programming languages. Our bus
topology file, an example of which is shown in Fig. 5, uses
YAML maps and sequences to encode information. Each
bus type (e.g. RS-485) is specified as a map key whose
value is a sequence of instantiations of that bus. In Fig.
5, for example, rs485_bus has one instantiation, named
limb_1. Each element in this sequence is itself a map
comprised of a name, optional bus-level details (e.g. baud
rate) encoded as key/value pairs, and a required map key
called devices. The value of devicesmust be a sequence
of device parameter maps, whose order corresponds to their
physical bus position.

At runtime, this YAML file is read in by each module that re-



# Language: YAML 1.2

rs485_bus:
- bus_name: limb_1
devices:
- type: motor_controller

name: wrist
gear_ratio: 156
max_speed: 6.2

- type: motor_controller
name: elbow
gear_ratio: 310
max_speed: 3.14

# Additional devices on bus here
# Additional buses of type rs485_bus here

Figure 5. Example bus topology YAML file.

quires knowledge of device configuration using our robot util-
ity functions that wrap an open-source YAML parser [2]. The
parameters for each device are stored in a mot_config_t
struct using separate helper functions defined in each bus
module. Typically, only bus modules require specific details
for the devices on their associated bus, while behavior and
UI modules need only the high-level bus/device layout. If
a behavior module needs to know more specific information
about a device (e.g. actuator gear ratio), it can call a bus
module’s device parsing function to fill out their copy of that
device’s mot_config_t struct.

5. IMPLEMENTING MODULES IN THE NEW
IMPLEMENTATION

Bus Modules

Bus modules are different from higher-level behavior and
UI modules in two important ways. First, bus modules
contain extra information necessary for MotGen to auto-
generate message types for communication with higher-level
modules. Second, we often want to run multiple instances
of the same bus module, as we often have multiple buses of
the same type. For a robot with multiple arms, for example,
it would be convenient to operate each arm on a separate
bus, in case one were to crash, a system-level architecture
described previously in [9]. For this reason, we also include
an integer variable, msg_sender, in the mot_state_t
struct as shown in Fig. 3. This variable allows other modules
receiving an array of state structs to discern from which bus
module that array came. This means that all modules must
know about each bus module’s unique identifier. We map this
unique identifier to the order in which a given bus module
appears in the bus topology YAML file. While high level
modules can read in this order directly, there is ambiguity at
the bus module level, and thus we also pass in the unique
identifier as an option to the bus module executable.

Behavior Modules

Behavior modules control bus modules to perform some set
of actions. Due to the similarity between different behavior
modules, a python auto-coder was created that generates a
new behavior module from a template, naming all of the files
and variables according the desired name of the module. A
key aspect of this auto-coder is that it contains a core and
a project directory, allowing core functionality to be shared
across robot platforms or projects, while project functionality
can be customized for each robot platform. This produces
several advantages: 1) it forces standardization, which re-
duces bugs across code, removes the need to reinvent the

wheel, and makes it easier for people to understand the code,
2) it allows developers to focus on algorithm development
instead of boilerplate code, and 3) enables more code reuse
due to the core/project paradigm. This paradigm consists
of having two independent directories, core and project, that
depend on each other. The core contains generic command
definitions and behaviors, while the project contains project-
specific commands and behaviors. For example, an Arm
module might contain all the basic motion algorithms in the
core, such as joint and Cartesian space trajectories and path
planning, while the project could add commands and behav-
iors for controlling a specific gripper mechanism or using a
platform-specific kinematic solver. We chose to implement
behaviors using Hierarchical State Machines (HSMs) [15],
but any other scheme could be substituted in to achieve the
same result. The behavior module template is already set
up to receive messages from the command-line interface
and communicate with bus modules. Adding a behavior
module to a robot platform involves adding it to the modules
directory, adding it to the robot platform CMakeLists.txt file
and adding it to the Cmd and IPC files.

6. BUILD SYSTEM
For our new implementation of CASAH in Ubuntu 14.04, we
use CMake to aid in the compilation process due to its ease
of use, flexibility, and proven reliability [11]. Each behavior,
UI, and bus module has its own CMakeLists.txt configuration
file. Users can specify which of these modules’ configuration
files gets included with a CMakeLists.txt file located within
the current robot platform’s directory. In this way, directories
and references can be different for each robot platform in a
particular software package instantiation, facilitating modu-
larity at the build level and consequently code reuse. At the
configuration step, an option is passed into the cmake binary
that specifies which robot platform to use for compilation. A
CMakeLists.txt file within the root directory uses this option
to include the appropriate platform’s CMakeLists.txt.

The root CMakeLists.txt file also includes configuration files
for mot and optionally external libraries. The mot CMake-
Lists.txt file is responsible for calling the MotGen binary
that auto-generates the message structs header and associated
helper functions files in that same mot directory. These
files are then compiled into the mot library, against which
all modules link. To actually compile our software, after
running cmake, the user simply runs GNU make to compile
all executables and libraries. Note that for organizational
purposes, an out-of-source build was chosen, which results
in all build files being put in a separate “build” directory and
all module binaries being put in a separate “bin” directory
at the root directory. Fig. 7 shows an example of how this
build process is structured. In this example, the user would
run cmake -Drobot="Spacecraft Emulator" to
set up the appropriate build and configuration files, and then
make to compile module binaries and the mot library.

7. COMET SAMPLER APPLICATION EXAMPLE
An example of our software package being used on a real
system is JPL’s comet sampler testbed. Here, JPL is exploring
a notional mission concept in which a spacecraft would fly to
a comet and retrieve a sample using an on-board sampling
mechanism [3]. For research, an electro-mechanical system
has been developed to emulate a 2200 kg spacecraft with a
comet sampling mechanism. Fig. 6 shows this system, which
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Figure 6. Actual Comet Sampling Spacecraft Emulator
hardware.
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Figure 7. Comet Sampling Spacecraft Emulator build
system. Not shown are CMakeLists.txt files in each of the

modules within the “Modules” directory.

consists of a 2200 kg cubic structure with seven compressed
air tanks used to control air bearings and thrusters, as well
as a single-actuator sampling mechanism. To emulate the
sampling event, the system floats on air bearings, controls its
thrusters to approach the comet simulant based on position
data from a motion tracker, fires the sampling mechanism,
and ascend from the comet. This software/hardware system
is comprised of an operator control station, the untethered
spacecraft, a spacecraft computer, an Arduino Due control-
ling the air bearings and thrusters, a servo drive controlling
the sampling mechanism actuator, and a motion tracker track-
ing the position of the spacecraft [12]. Fig. 7 shows the
module layout for this system.

A similar system, comprised of the sampling mechanism
at the end of a robotic arm, is also used in testing. The
same software system can be used in controlling this testbed

simply by changing the contents of the bus topology file and
including the appropriate bus and behavior modules. We
found that using our software in switching between these two
testbeds greatly reduced the time required to both set up basic
functionality and develop more complex control algorithms
due to modularity and ease of code sharing.

8. DISCUSSION
Replacing Bus Modules

Replacing CASAH bus modules in our implementation
framework requires minimal effort. For example, if a user
wishes to replace a particular motor controller device that
uses a different bus communication protocol, they would first
edit the bus topology YAML file to reflect the changed bus
and device type. Next, because our implementation is written
in C, the user would edit how the mot_device_t struct’s
unions are dereferenced within behavior and UI modules, ide-
ally in an single file where bus specific converter functions are
defined. While this seems cumbersome, we actually found
that the explicit reference to which bus modules are being
used reduced bugs in logic and made code more readable.
Further, as previously described, behavior modules are set up
such that core functionality is retained while project function-
ality is tailored to the particular bus topology. Therefore, each
bus topology has its own set of project files and so the user
does not have to keep replacing code every time they swap
out a bus module.

Compatibility With SysML Auto-Coder

As discussed in [8], outlining robotics control software using
block diagrams can be beneficial. Generating state machines
and hardware topologies is well-suited to a block diagram
format and can be developed with a tool such as MagicDraw
[13]. Our software interfaces with this workflow with no
modification by providing standard formats for the HSM
and bus topology files, as well as a library of functions and
devices types available for use in the block diagrams. Though
the implementation outlined in [8] is done with MagicDraw,
we can extend to any number of visual diagramming tools
provided they conform to our interface. Once the user
draws block representations of state machines and hardware
layout, they are converted into code and configuration files,
respectively, following the techniques described in Section
3. This process can quickly be iterated for any change or
additions to the behaviors and devices.

9. SUMMARY
In summary, our novel implementation of the JPL CASAH
software system contains no hidden middleware, but rather
is a minimal software implementation and method for auto-
generating transparent message types and helper functions,
which facilitate interchangeable software elements. This
auto-generated code provides modules with a common lan-
guage for exchanging hardware-level state information and
commands and is precisely tailored to the hardware config-
uration of the current robot platform. A robot platform’s
hardware topology and configuration is expressed using a
single human-readable YAML file that is parsed by all
modules at runtime. Our suggested flexible build system
facilitates switching between robot platforms with minimal
effort. As a result of these features, Our software system
significantly reduces developer overhead, especially in tech-
nology development systems that require rapid prototyping



of different hardware configurations and behavior control
modules. Furthermore, its transparent auto-coding scheme
makes debugging simple and facilitates practical code reuse
since there are no hard-coded hidden module dependencies.
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