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Abstract—Potential Mars Sample Return (MSR) would need a
robotic autonomous Orbital Sample (OS) capture and manipu-
lation toward returning the samples to Earth. The OS would
be in Martian orbit where a sample capture orbiter could find
it and rendezvous with it. The orbiter would capture the OS,
manipulate it to a preferential orientation for the samples, tran-
sition it through steps required to break-the-chain with Mars,
stowing it in a containment vessel or an Earth Entry Vehicle
and providing a redundant containment to the OS (e.g., by
closing and sealing the lid of the EEV). In this paper, we discuss
component technologies developed for in-laboratory evaluation
and maturation of concepts toward the robotic capture and
manipulation of an Orbital Sample. We discuss techniques for
simulating 0-g dynamics of a spherical OS, including contact, in
a laboratory setting. In this, we leverage a 5dof gantry system
and, alternately, a 6dof KUKA robotic arm to simulate the OS
motion. Both the gantry and robotic arm are mounted with a
force-torque sensor that enable detection of contact and provide
measurements to simulate, in hardware, the 0-g OS dynamics.
We present results that demonstrate the validity of our approach
and the extent to which we are able to simulate 0-g dynamics in
a laboratory setting. We also discuss techniques for detecting
and tracking the OS using optical sensors and LIDAR from
near-capture distances. These are discussed in the context of
individual sensors as well as fusion of multiple sensor readings.
Results of hardware experiments with different sensors are
presented. Further, we discuss an uncertainty quantification
based physics modeling capability for quantitative evaluation
of different concepts for OS capture and manipulation. The
computational models are based on high-fidelity multibody dy-
namics simulations of the OS, robotic elements and their contact
mechanics. We present results that demonstrate our effective
use of computational simulations in a complementary manner
to hardware experiments. Finally, we present a cyber-physical
approach to concurrently fusing hardware elements, computa-
tional simulation elements and autonomy software to effectively
and rapidly simulate end-to-end systems concepts for end-to-end
orbital sample capture and manipulation system concepts.
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1. INTRODUCTION
With the success of the Mars rover missions, interest has
grown again in formulating a series of potential missions
that would acquire samples from Mars and return them to
Earth. These are commonly referred to as potential Mars
Sample Return (MSR) [1]-[2]. Mars 2020 will take samples,
seal them in tubes and leave them on the Martian surface.
Concepts currently being considered involve another rover
acquiring these tubes, storing them in a cache and loading
the cache on a Mars Ascent Vehicle (MAV) in an Orbital
Sample (OS) cache. The MAV could then launch the OS into
Martian orbit where a subsequent orbiter would rendezvous
with it and robotically capture it. Along with the payload for
rendezvous and capture, the orbiter would also have robotic
manipulation capabilities to orient the OS, within bounds, of a
predetermined orientation, take the OS through various plan-
etary protection steps (commonly referred to as Breaking the
chain or BTC with Mars), stow it in an Earth Entry Vehicle
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(EEV) or an alternate Secondary Containment Vessel (SCV),
and finally eject the EEV or the SCV. Either the EEV would
return the samples to Earth or subsequent mission(s) would
return the SCV to Earth. In this paper, we discuss our on-
going efforts, and preliminary results, within a JPL internally
funded research and technology development effort towards
developing technologies and test-beds towards supporting the
orbital near-phase rendezvous, capture and manipulation of
the OS as described above. Specifically, our interests lie in
the events starting from the OS being in the range of 10m
or so away from the spacecraft through the robotic capture
and manipulation of the OS. We do not focus on the BTC
or planetary protection steps. As the orbital rendezvous and
capture elements are not finalized, or committed to a mission,
we use information consistent with current (and evolving)
formulation efforts. Consistent with past MSR efforts and
previous technology efforts, we focus on a spherical OS with
a notional size of 27cm and a notional mass of 12 kg. Based
on other engineering studies, we bound the relative bore-sight
translational speed between the OS and the spacecraft to be
no more than 10cm/s and assume that the OS may have a
rotational speed of 10rpm.

2. OS DYNAMICS TEST BEDS
To simulate the OS 0g free space dynamics in a laboratory
setting for the imminent capture phase, we set up two test
beds. In one case, we use a robotic gantry system that pro-
vides 3 translational degrees of motion driven by DC motors
with encoders. We developed a design for 2dof rotational OS
as shown in figure (1). The design fundamentally consists
of two rotational stages mounted at 90 degree to each other.
The vertical stage is mounted on to the gantry end effector
and enables a continuous rotation about the vertical axis.
The vertical stage consists of a 6 axis force-torque sensor
and a thin-gap motor. The design of the thin-gap motors
provide very low resistance to free rotation when the motor
is not turned on. This enables us to either drive the vertical
stage at a desired speed or to get to a desired rotational
speed and allow the OS to freely coast after that by turning
off the motor. The horizontal stage is passive and rotates
freely. An encoder is mounted on the horizontal stage to
measure the angular rotation. Two hemispherical shells were
fabricated and mounted on the horizontal stage to get the
near spherical form-factor of the OS. We also instrumented
the OS with a wireless accelerometer. The resulting system,
of the 3 actuated gantry stages, 1 actuated rotational OS
stage and 1 passive OS rotational stage were capable of
simulating 5 dof OS free space dynamics within the bounds
discussed above. A second test bed was developed using a
6dof KUKA industrial robot. In this case, we mounted a
metal sphere, as an OS surrogate, to the end of the KUKA
arm. The KUKA arm was tested and set to provide Cartesian
linear motion of the OS model. The final actuator on the
KUKA arm provides one rotational degree of freedom. This
system was thus able to provide 4 dof OS freespace 0g
dynamics. For verification, of the OS free space dynamics
on the gantry system, we used a VICON camera setup to
measure the OS trajectory and compare the results with the
kinematics obtained from the gantry motor encoders. These
were found to be consistent with the commanded trajectories
and speeds, and a representative result is shown in figure
(2) while the error between the encoder based and VICON
based trajectories are shown in figure (??). We developed the
capability to generate coordinated 3D motion of the gantry
system such that it could move the OS along a straight line
in any Cartesian direction. For the KUKA based test bed,

we relied on the manufacturer’s precision and repeatability
measures for OS motion.

Figure 1. Image shows the OS simulator capable of two
rotational degrees of freedom

Figure 2. Trajectory comparison is shown between the
data recorded using a VICON system and that obtained

from the gantry encoders

3. OS TRACKING
Our efforts have focussed on tracking the OS with LiDAR
and cameras with a relative separation of about 10m. This
is primarily aimed at algorithm development and quantifying
sensor performance in a laboratory setting. As a represen-
tative LiDAR, we used a SpectroScan3D MEMS Scanning
LiDAR. The raw data from the lidar is read into memory
as a point cloud and three perception algorithms can be
performed on the data. Once these various estimates of OS
position are returned, they fused with a Kalman filter [8]. The
filter provides estimates of the underlying state, including OS
velocity.

Closest Point—The simplest algorithm simply finds the clos-
est point to the LiDAR, assumes that the point is on the
surface of the OS, and adds the OS radius appropriately to
estimate the 3D position of the OS. This algorithm is simple,
but is weak to noise on that single point and weak to clutter
(necessary in lab testing for support and motion) in the field
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Figure 3. Error between VICON data and encoder
based data

of view, but could be used in flight if any visible orbiter
components are blacklisted.

RANSAC—The RANSAC algorithm[5] is applied by sam-
pling random points in the cloud, fitting the equation of
a sphere of known radius to those points, checking which
points in the cloud are consistent with the model (inliers),
and generating a new model from the inliers. These steps are
repeated until the inlier set stops growing. This is repeated
with different initial points, and the best model found is
returned. Initial points can be seeded with estimates from
other algorithms.

Figure 4. The Hough Algorithm applied to OS detection.
OS depth image, left. The Sobel edge detector is used to

find edges and the gradient is used to project lines,
center, and accumulate votes in the Hough space, right.

The maximum is chosen from the Hough space and
converted to a 3D position estimate.

Hough Transform—The Hough transform[6] is used to extract
circles or other features in the images. This can be applied to
a 2.5D depth image interpretation of LiDAR data, Figure 4.
First the depth image is smoothed to reduce noise, and edges
are extracted using the Sobel operator[7]. Secondly, at the
location of edges, the depth gradient is found, and lines are
projected in the direction of negative gradient. The depth at
the edge is used to estimate the radius of the OS in pixels if the
OS is indeed at that location, and used to accumulate “votes”
in the Hough parameter space. The Hough space maximum
is converted to 3D coordinates and returned as the estimate of
OS position.

We used a set-up as shown in figure (5) to conduct a set of
experiments to quantify the LiDAR OS tracking performance.
We painted the metal OS in a matte finish to remove reflective

Figure 5. The OS is mounted on the KUKA robotic arm
and driven in a straight line trajectory towards the

LiDAR

issues. Once LiDAR and KUKA data have been logged
and converted to MATLAB, we apply known transformations
to convert the KUKA positions to the LiDAR reference
frame, correct for time differences, do a second corrective
3D transform, extract the subset of motion corresponding to
the actual trials, and extract error statistics for each LiDAR
algorithm. Our approach removes biases from static errors
in the transforms between the LiDAR and the KUKA robotic
arm to return the OS relative tracking performance.

Figure 6 shows the temporal history of comparison between
the trajectories of the OS from the KUKA robotic arm en-
coders and the LiDAR measurements. The results of a nom-
inal run are summarized in figure (7) while figure (8) shows
the scatter plot of the error from the RANSAC algorithm as a
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Figure 6. Three trajectories commanded to the KUKA
robotic arm and those measured by the LiDAR are

compared in the graph

representative data set.

Figure 7. The mean error and standard deviations in
error obtained from the three different algorithms are

shown in this figure

Similarly, we set up a test bed for camera based OS detection
and tracking. We set up a dark room with a light source
and an OS in a manner that the relative yaw and distances
could be appropriately set. For detecting the OS our current
approach is follows: Given that we are aware of the position
of Mars and any spacecraft parts in the image, we find the
approximate area of interest in the image which contains the
OS by searching for the largest bright object visible. This
gives a lower and upper bound on the size of the OS in the
image, and an approximate position. Then, taking the field
of view of the camera, the direction the camera is facing, and
the relative position of the sun, we generate a patch that is
approximately what the lighted region of the OS would look
like in only sunlight. We do this by rotating a circle in 3D
space and projecting it back onto the original viewing plane.
Instead of just using a flat template, we make the template a
step function, which has a value of 1 at the edge up to N at
the center. Using this template, we can create a histogram
of how many pixels would be in the image given an OS of a
size corresponding to a number of pixels in diameter. Now
taking the original image, and the region identified from the
first step, there are two steps: calculating the diameter of the
OS in pixels, and finding the exact center of the OS. Finding
the diameter is done by counting the number of bright pixels
in the test region, and comparing to the histogram created
in the previous step. Then, calculating the centroid of the
bright pixels in the test region, one can find the exact center
of the OS by using the difference between the centroid of a
template with the calculated diameter and its corresponding
center. Once you have the OS diameter and position in pixels,
the direction of the camera and field of view can be used to

Figure 8. The scatter plot shows the error between the
KUKA arm based trajectory and that measured by the

LiDAR as a function of time for 3 test cases based on the
RANSAC algorithm

calculate the OS position in spaceship relative coordinates.
Figure (9) summarizes our approach.

Figure 9. Summary of the overall approach for optical
OS detection showing the original image, and the three

stages of data processing by the algorithm

4. CAPTURE TEST BED
We developed an approach to simulate 0g contact dynamics in
the laboratory based on force-torque detection and reacting to
the measured loads in a manner consistent with 0g dynamics.
Towards this, we used our gantry and KUKA arm based OS
hardware simulators for the pre-contact dynamics of the OS.
Using the gantry, for example, we achieve the 5dof desired
initial conditions in translational speed and angular velocity.
As a first step, we ascertained that the gantry and the KUKA
arm had the mechanical bandwidth to simulate a 0g dynamics
by being able to pull a 1g bounce maneuver. As seen in figure
(10), we validated the ability of the gantry to demonstrate this
capability. As seen in the graph, the gantry is able to produce
a 1g acceleration against gravity at the top end of the expected
OS relative speed.

When the OS makes contact with the capture hardware,
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Figure 10. The graph shows validation of the ability of the gantry system to generate 1g gravity offset acceleration. As
seen, the gantry transitions from 10cm/s velocity to -10cm/s in 20ms giving a net 10m/s2 acceleration against gravity

discussed next, the interaction loads (forces and torques) are
measured using the embedded force-torque sensor. These
loads are then used in conjunction with an on-board OS
3D dynamics simulator that provides the physically correct
dynamic response of the OS. The gantry is then driven in a
manner consistent with the simulated OS behavior to obtain
a 0g OS dynamics in the laboratory. While this is the overall
architectural approach, we made two changes to meet the
desired results. First, instead of reacting the measured torque
and attempting to simulate the reaction, we allowed the OS
to become passive during the contact phase to get the actual
torque reaction. The reason is two fold: first gravity does not
effect the rotational dynamics and second, the surface friction
behavior is difficult to model in high fidelity. Hence, using
our OS simulator, we drove the OS to its desired angular
speed (less than 10rpm) and turned the thin-gap motor off
just before contact. This enabled the OS to freely rotate as
the thin-gap motor has very low friction. The second major
implementation change was the nature of the force feedback
algorithm. We found that the frequency of the force-torque
sensor and the control loop was not fast enough to respond ac-
curately in impact scenarios. This was particularly acute for
the KUKA controller that has a 250Hz control loop. In such
cases, we used a coefficient of restitution model to simulate
the impact. The measured loads, from the sensors, were used
to obtain the directions of motion involved in the contact and
a prescribed coefficient of restitution was used to simulate the
dynamic response. Figure (11) shows the resulting outcome
where the desired and realized trajectories (superimposed) are
shown for different prescribed coefficients of restitution. The
results are excellent, and it is difficult to discern the error
between the trajectories.

Given this contact dynamics approach, we pursued two dif-
ferent types of contact test beds based on (i) mechanically

accommodating the uncertainty in relative OS position with
respect to the spacecraft i.e. using a large mechanical capture
volume or (ii) using better autonomy and sensing to precisely
capture the OS. An example of a design of item (i) is a
cone based capture device, and we built a test bed for that
to understand the contact dynamics of the OS as it bounces
around the larger mechanical capture volume as shown in
figure (12). An example of item (ii) is using two small shells
that are brought together autonomously by tracking the OS
position and velocity accurately using sensing as shown in
figure (13).

In case the resulting uncertainty from the spacecraft control
and relative OS tracking estimate are such that a large me-
chanical capture volume is warranted, we used a mechanical
cone with a lid as a capture device. This is consistent with
a similar design pursued in [3]. Figure (12) shows our test
bed. The 5dof OS has been previously described. The capture
cone is a simple mechanical device that allows the OS to enter
from the larger end. The larger end of the cone is sized to
accommodate the OS diameter and the 3 sigma bounds in the
uncertainty of OS relative position. The rim of the cone has a
laser curtain (not shown in figure) such that the OS entering
the cone breaks the laser curtain. This in turn triggers a lid
that traps the OS in the cone and guides it to a restrained
volume. The OS has a potential to bounce back and forth
between the capture cone and the lid until the lid traps the
OS in the narrow end of the cone. Each bounce causes the
OS to slow down, thereby iteratively bringing it to rest. A
mechanical lid is not shown in the test bed image as we used a
simulation-in-the-loop hardware test bed approach where we
used computer simulations of the lid. This is discussed in a
later section and it allows us to try out different lid geometries
and mechanisms effectively and quickly to support a trade
study.
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Figure 11. Figure shows bounce trajectories from the KUKA arm for different coefficients of restitution

Figure 12. The capture cone is shown here in the test bed
with the OS simulator

In case the resulting uncertainty from the spacecraft control
and relative OS tracking estimate is sufficiently small, a much
smaller capture device can be used. Towards this, we built
a test bed as shown in figure (13). The OS dynamics are
handled using a 6dof KUKA arm. The capture device consists
of two hemispherical shells, one of which is actuated using a
linear-actuator while the other is fixed. The OS approaches
the shells in a direction orthogonal to the linear-actuator. By
precisely tracking the OS trajectory, the actuated shell moves
in towards the fixed shell synchronously with the approaching
OS and traps it first by caging it and then by closing in further
until the two shells are in contact and the OS is brought to a
rest. By caging, we mean that the shells are brought close
to each other such that the OS, though still not in contact
with the shells, is unable to escape due to the geometric cage
formed by the fixed and approaching shells. Note that the
maximum relative translational speed expected is 10 cm/s.
This is sufficiently slow enough that the relative motion of the

Figure 13. The minimal capture volume test bed is
shown here with the OS mounted on the KUKA arm and

the two capture shells mounted on a linear slide

two shells is fairly slow (less than10 cm/s) and not a dynamic
event like a mouse-trap.

A third test bed was developed that had a much shallower
capture cone than the one discussed above, but allowed for a
larger uncertainty in the OS relative position. As shown in
figure (14), the capture device is a hemispherical shell with a
flared opening. There are two actuated bars that close in on
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the approaching OS and restrains it against the shell. Similar
to the capture cone design, the rim of the shell has a laser
curtain (not shown). When the OS breaks the laser curtain,
the actuated bars are triggerd and then quickly close in on
the OS to retain it. We tested the design successfully with
misalignment of about 30% of the OS diameter between the
OS approach vector and the shell center.

One of the biggest imports from these capture test bed studies
has been the understanding of the nature of the contact
dynamics. Unlike [3], where the relative velocities of 30cm/s
were used, the contact dynamics are not dramatic and are
fairly slow. This enables the accuracy of the capture devices
to be relatively high and the actuation requirements are not
very fast. As can be expected, the performance and success
rates are much higher, almost certain, for the slower speeds
of approach and lower errors in alignment of the OS with the
center of the capture device.

Figure 14. This is the third test bed which is based on a
capture shell with flared opening and actuated fingers

5. AUTONOMY SOFTWARE
A fully distributed architecture has been created for the
purposes of testing sample transfer technologies (Figure 15).
Functionality is broken into stand-alone processes which
communicate over TCP, UDP, or shared memory, depending
on the size, frequency, and criticality of the communication.
Modules are grouped into four main “layers”.

Physical Layer—The physical layer consists of the M3tk [4]
physics simulator, a high fidelity multibody and contact dy-
namics in-house simulation package, and firmware of sensor
and actuator controllers.

Driver Layer—The driver layer consists of the MOT module,
which brokers actuator commands from other modules, and
perception modules, which push raw perception data into
shared memory, estimate OS location from raw data, and
perform sensor fusion. The interface between the rest of the
modules and the physical layer is set up in a such a way
that the other layers are agnostic to whether the data is being
generated by a simulator or the physical devices. Further, the
interface is developed in a manner that both hardware devices
and simulator can be used concurrently. This allows a test
bed to concurrently have hardware and software simulated
elements.

Functional Layer— This layer represents the functionality
of cohesive subsystems of the orbiter, such as the capture
device, or of the test equipment, such as the gantry. These
modules contain the autonomous behavior algorithms such
as coordinated motion or force-feedback.

User Layer—Modules in this layer are used to launch other
modules, monitor system state, and issue commands.

The distributed nature of the autonomy software enables
rapid adaptation to different test beds. The Driver Layer
software is written in a modular manner that it is agnostic

to the Functional Layer software. It enables repeated and
high reliability means of commanding device drivers across
different test beds. The Functional Layer software allows
the users to rapidly develop different test bed behaviors by
implementing the autonomy algorithm and using standard
API from the Driver Layer. This reduces development
time and modularizes the custom implementations for each
test bed. We are also working on developing an approach
for graphically generating the autonomy behaviors and auto
generating the executable software for the Functional Layers.
This largely builds on an existing framework for specifying
short-hand text representations of hierarchical state machines,
as well as a method for auto-generating flight-capable real-
time software. Our improvement to the state of the art in this
area is the ability to auto generate the executable code rather
than auto generating studs that the user had to fill in. By using
the standard API provided by the Driver Layer, we enable the
user to use SysML and graphically construct the autonomy
behavior algorithm. This graphical approach uses embedded
Driver Layer software calls and the overall graphical algo-
rithm is translated directly and automatically into executable
code that can be compiled and run without user having to
write code. An accompanying paper [] discusses this work in
more detail.

6. COMPUTER SIMULATIONS
As 0g hardware simulation in laboratory is a difficult
prospect, we used computer simulations in conjunction with
hardware elements to develop and test our concepts. We
used M3tk, a high-fidelity simulation tool kit for general
mechanical systems, as a simulation platform, and added a
few new capabilities to it in order to meet project-specific
requirements in modeling and simulation. One of the main
requirements for simulating the concepts is the calculation
speed. This is not only to finish a simulation within a
reasonable amount of time, but also to achieve a real time
simulation performance in case of running a cyber physical
system where the hardware and the simulated parts must
be interacting with each other in real time. Since the OS
and the capturing and reorienting devices make metal-to-
metal contacts with high stiffness, we use a tiny step size
for time integration in order to capture the instantaneous
contact phenomena as accurately as possible. Therefore we
need to reduce the calculation time for the individual time
step significantly. We address the issue with two methods
i.e a system-of-systems approach and analytical collision
detection.

Figure 16. This shows a representative set of systems
studied using our simulation capability.

Consider for example an end-to-end concept, shown right-
most in Figure (16). It consists of multiple subsystems: 1) a
pair of blades for capturing and pushing the OS to the bottom
shell, 2) the rollers at the end of the blades for reorienting
the OS, 3) the capture cone ejection after the capture and
reorientation, 4) the four-bar mechanism for covering the OS
with the top shell, 5) the double pendulum mechanism for
transferring to the EEV, 6) the EEV cover opening actuator,
and 7) the EEV ejection system. Due to the many number
of degrees of freedom, it takes a long time to solve the
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Figure 15. The MOSTT software architecture consists of distributed modules grouped into four “layers”: the Physical
layer, with hardware and simulations; the Driver layer, which processes raw data and brokers access; the Functional

Layer, representing subsystems; and the User layer, for operation of the system.

equations of motion of the full system. Since each subsystem
performs one at a time while the others are waiting until the
current step is done, we have a chance to further speed up
the simulation by treating each non-active subsystem as a
merged body and considering only the degrees of freedom
of the current active subsystem. It appears to be a simple
simulation concept, but we must handle the state transition
between different subsystems correctly, and also calculate
the contacts in the full system and transfer the forces to the
current subsystem. We were able to achieve about 5 times of
speedup by introducing the subsystems in the simulation of
the end-to-end system.

We developed a subsystem module for M3tk. It creates
subsystems by reading a definition file written by the user and
initializes their states with the full system state before starting
the simulation. At every time step, only one subsystem is
simulated at a time by solving the equations of motion to
update its local state at the next time step. Also, at the
same time, the full system is kept updated using the local
state of the current subsystem because we need to use the
full system to calculate external body forces such as contact
forces and spring forces at every time step. The forces are
then transferred back to the current subsystem in order to
consider them in solving the dynamic equations. Subsystem
triggering can be manually prescribed by the user or dictated
by an external autonomy code, or even automatically done in
M3tk, but with a limited performance, by using a heuristic
method based on state monitoring. A state observer monitors
the full system state, including joint velocities and their
control targets, to detect a set of active joints that are expected
to change continuously, and find a subsystem containing all
of the active joints among the subsystem list the user defined.
If there is no such subsystem in the list, the full system
will be chosen. When we trigger a new subsystem, it does

not know about the change in the system configuration by
the previous subsystem, and thus, the inertia matrices of the
bodies associated with the new subsystem are recalculated
using the configuration of the full system. Note that, however,
the inertia matrix update is conducted only once whenever a
new subsystem is triggered, and it is not needed any more
until next triggering happens.

Collision detection and identifying contact locations is a
very time consuming task, especially when the model is
exported from a CAD software and consists of discretized
triangular meshes of complex shapes such as the concave
bowl and the spherical Orbiting Sample (OS) with positive
or negative features to facilitate capturing and reorienting
it as appeared in Figure (1). Even with the state-of-the-art
collision checking algorithms for 3D meshes, the simulation
would suffer a significant slowdown when the step size for
time marching is very small as in our cases. Decreasing the
resolution of the meshes can give a speedup, but it sacrifices
the simulation accuracy. Analytical formulation for detecting
and locating contact points between geometry pairs can lead
a significant speedup compared to the generic mesh-based
algorithms, but is only available for a limited set of primitive
pairs and not applicable to arbitrarily shaped geometries
in general. M3tk originally provided analytical collision
checking only for a limited set of primitive shapes such as
box, sphere and capsule. We have extended the collision
detection library to support modeling of more various kinds
of shapes found in our concepts such as revolved surface,
concave spherical shell, and cone etc. The primitives can be
combined together to make a more complex shape as well.
For example, cylinders can be subtracted from a sphere to
model an OS with holes on the surface like a bowling ball.
Figure (17) shows the collision model we used to simulate
the overall concept. In the model the spherical OS has three
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Figure 17. The primitive shapes (spheres, cylinders,
cones etc.) based collision model of an end-to-end system

is shown here

cylindrical holes subtracted from the sphere so that it can be
grabbed by three passive pins of the concave bottom shell, the
capturing cone is modeled as a revolving surface of a curved
line, and the blade is a composite of multiple boxes, cylinders,
and a point cloud.

It is common practice to conduct a Monte-Carlo simulation,
or running many simulations with slightly different settings
or inputs, in order to account for the modeling uncertainties
in the evaluation of a concept. We used an in-house python
module to set up massive Monte-Carlo simulation instances
and to run them in parallel on a cluster. Figure (18) shows an
example of uncertainty analysis of the capture cone concept
in order to study the effect of the OS spin rate and its approach
speed toward the cone on the capture performance. The
horizontal and vertical axes indicate the approach speeds
and the OS spin rates we tested respectively, and for each
velocity pair, we run a Monte-Carlo simulation to consider
the uncertainty in the OS position on the plane perpendicular
to the approach direction and the spin axis direction using a
thousand random samples. We modeled the contact between
the spherical OS and the cone and its lid assuming a Hertzian
model with Coulomb friction. The material stiffness and the
dynamic friction coefficient were set to 7.5E10 N/m and 0.3
respectively in the simulation. According to the simulation
result, we expect that the concept would be able to capture
the OS successfully if the OS speed is less than 10 cm/s for
the operational scenarios chosen for simulation.

7. CYBER-PHYSICAL SIMULATIONS
To support the different electromechanical concepts that are
being formulated for the orbital sample capture and ensuing

Figure 18. The results of a Monte-Carlo simulation of
OS capture and the simulation parameters are shown

here

manipulations, we are working towards realizing a fully func-
tional cyber-physical simulation capability in our test beds.
By cyber-physical, we mean simulation-in-the-loop hardware
test beds where some elements are realized in hardware and
some are simulated using detailed multibody and contact
dynamics computer simulations. Toward this, we have made
improvements in the capabilities of our M3tk simulation
package as discussed above, particularly in the subsystem
representation of the overall system and in contact detection.
This has enabled a 5 times improvement in performance
and ability to perform real-time simulations. We are also
working on off-line, web-based visualization that may further
improve the simulation performance. Similarly, we have
architected the autonomy software in a manner that it can
agonistically interface with hardware and software elements.
From a software development perspective, the user has to set
a few flags to identify what parts of the overall system are
hardware and what parts are software simulated. The overall
software development part, particularly in the Functional
Layer, does not involve any code changes to accommodate
or switch between hardware and software elements. As an
example of this capability, figure (19) shows a snapshot of
our capture cyber-physical test bed. The image on the left
shows the computer simulated system. Here the OS and the
capture cone are simulated with a lid. Collisions are checked
between the OS, capture cone and the lid. The lid is modeled
as a mechanical element that is rotated in place and then
actuated downwards. This traps the OS and the OS bounces
against the cone and the lid. The image to the right shows
the hardware elements i.e. the physical OS and the physical
capture cone. In this cyber-physical test bed, the collisions
between the OS and the capture cone are obtained from the
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hardware elements. The physical force-torque sensor records
the interaction loads and passes it to the autonomy code.
The computer simulation models the interaction between the
OS and the simulated lid. The OS position is being tracked
from the actual hardware element via the gantry drive motor
encoders. The OS state are being fed back to the dynamics
simulation. The simulation also has a simulated OS and the
states from the hardware and simulation are tracked to check
for error. We have recently added the ability to use the LiDAR
in place of the gantry encoders to track the OS. Similarly, we
also have computer simulated camera models that can also
track the simulated OS and provide multiple sensor feedback
for the Kalman filter based estimator.

Figure 19. This shows the juxtaposition of the computer
model and the hardware element that are being

controlled concurrently in the same autonomy scheme in
real time. The computer model is a multibody dynamics
model of the OS, capture cone and actuated lid while the
hardware elements simulate the OS and its contacts with

the hardware cone

8. FUTURE WORK
As this is an ongoing work, there remain a number of items
to be developed and tested as a part of this effort. We plan
to conduct detailed testing, including field testing, of our per-
ception sensors and algorithms for OS tracking. This would
include sensitivity studies as well as use of stereo cameras,
and LWIR imaging in conjunction with the visual tracking.
Similarly, we propose to continue our hardware test element
builds with a focus on the OS manipulation requirements after
the capture. Particularly, there is a desire to orient the OS
in a specific orientation after capture. Similarly, there are
steps required to manipulate different mechanical elements
for the BTC and planetary protection steps as well as transfer
of the OS into an EEV or secondary containment vessel. On
the autonomy side, we plan to mature our efforts in auto
generating autonomy software using our graphical approach
and apply this to the different test beds. Finally, we plan
to continue to mature our cyber-physical test bed approach
by combining different hardware and software elements and
realize end-to-end systems.

9. CONCLUSIONS
In this paper we have presented a brief overview of some
of the technologies and test bed elements we are developing
towards supporting a potential Mars orbital sample capture
and manipulation payload. This test bed is being developed
with the Rendezvous and OS Capture System (ROCS) con-
cept payload for the Next Mars Orbiter (NeMO) mission con-
cept. We have developed detailed capabilities in mechanical

capture and manipulation test articles, multibody dynamics
simulations, autonomy software, perception based OS track-
ing capabilities, software auto generation capabilities and an
interesting cyber-physical test bed capability. Our goal is to
expand on these capabilities and realize a detailed test bed for
an end-to-end system such as the one shown in figure (17) i.e.
a capture system, subsequent manipulation stages, EEV or
OS retention vessels, ejections etc. using this cyber-physical
approach to enable end-to-end system testing capability.
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